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The number of self-consistent-field iterations needed for the density-functional theory treatment of metallic
systems grows with the size of the unit cell, not only for basic algorithms like simple mixing, but also for more
advanced schemes, in which results from several past steps are mixed. Preconditioning techniques have the
potential to suppress this growth, although the available methods have strong limitations: either they deliver
little improvement in case of mixed systems with metallic and nonmetallic regions, or the computation of the
preconditioner scales badly with the size of the system, with a large prefactor. We propose an approximate
preconditioner, with tremendously reduced prefactor, that makes the number of self-consistent cycle nearly
independent of the size of the system, and bears little overhead up to the one hundred atom range. The
susceptibility matrix, a key ingredient in our scheme, is approximated thanks to the closure relation. Instead of
using the exact formulation of the dielectric matrix, we rely on the random-phase approximation, that allows to
further decrease the prefactor thanks to a very low wave vector cutoff, even for systems with both vacuum and
a metallic region. We test this algorithm for systems of increasing size and demonstrate its practical usefulness.
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I. INTRODUCTION

With the advent of both powerful computers and fast al-
gorithms for solving the system of equations from density-
functional theory DFT,1 including so-called order �N�
methods,2 the spectrum of DFT application has expanded tre-
mendously. While ten years ago, systems of 400 atoms
seemed exceptionally big,3 today, people consider systems
with tens of thousand atoms or bigger.4

This idyllic picture of advances in DFT computation leaves
some problems aside. In particular, since the very beginning
of DFT, self-consistency has been an issue. Being able to run
many times across the DFT Kohn and Sham equation is not
enough if the process is not converging to the ground state.
Even if the procedure converges, the increase of the number
of self-consistency cycles needed to reach convergence
might be overwhelming. Many papers �e.g., Refs. 5–10� pro-
pose methods to enforce or to speed up the DFT self-
consistency convergence. However, none of them provides a
completely satisfactory answer to the challenge of present
and future large-scale DFT calculations for all classes of sys-
tems.

The simplest approach to self-consistency relies on a lin-
ear mixing of the output of an iteration with its input, used to
start the next iteration. Although not the most efficient algo-
rithm, it is particularly robust, as for each problem, there
exists a sufficiently small mixing factor that will make the
iterative procedure converge to a fixed point. However, in the
case of systems with a metallic electronic spectrum �vanish-
ing energy gap�, such mixing factor has to be decreased with
the size of the system, with a concomitant increase of the
number of iterations needed to reach a sufficiently accurate
solution.

In the present paper, we will focus on that class of sys-
tems, for which the number of iterations is roughly propor-
tional to the square of the largest linear dimension of the
system �L� within the simple mixing approach.3 The problem
is not that severe in the case of systems with an insulating

electronic spectrum, as for such systems, the growth of the
number of iterations saturates. Still, this number might be
large, and ought to be decreased.

Actually, finding the ground state of the DFT equations is
nothing else, mathematically speaking, than the optimization
of a continuous functional in a large space of varying param-
eters. Starting from a guess close to the sought solution, the
problem reduces to the optimization of a convex, nearly qua-
dratic, functional, a well-known subject of mathematical
analysis research. In order to improve upon simple mixing,
two lines of thoughts might be followed, and even combined
advantageously, that both arise from basic mathematical
analysis of this problem: �1� taking into account the result of
past iterations, and �2� using the available knowledge of the
response of the system through a preconditioning scheme.

In the context of DFT, both lines of thoughts have been
examined. Using the result of past iterations is the focus of
Anderson,5 Pulay7 or conjugate-gradient,11 and many
other12–14 schemes. Such schemes, that we will term “ad-
vanced mixing” algorithms, have theoretically the potential
to bring the scaling of the number of iterations down from L2

to L. On the other hand, preconditioning schemes, such as
those proposed by Kerker8 or Ho, Ihm, and Joannopoulos
�HIJ, Ref. 9�, and later developed by Sawamura et al.15 and
Auer et al.,16,17 could theoretically suppress completely this
scaling. While advanced mixing algorithms provide their im-
provement nearly irrespective of the type of system that is
considered, this is not the case of preconditioning schemes.
For existing preconditioning algorithms, either their range of
application is limited �Kerker’s scheme brings almost no im-
provement for strongly inhomogeneous systems�, or the time
to compute the preconditioner scales badly, and quickly be-
comes the dominating factor in the computation, as in HIJ
technique.

Referring to N as a conveniently chosen variable describ-
ing the three-dimensional size of the system �for instance,
the number of electrons, the cell volume or the number of
atom—if the cell is cubic, N will be proportional to L3�,
achieving overall order �N� DFT scaling implies order �1� for
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the number of SCF cycles, because the computation of the
density for a fixed potential cannot be reduced further than
order �N� scaling. Moreover, the extra computational cost
introduced by the use of the preconditioner should scale lin-
early at most. In the case of more standard order �N3� algo-
rithms, the constraint on the scaling of the extra computa-
tional cost due to the computation of the preconditioner
might be weaker—it should also be an order �N3� algorithm
at most.

The HIJ method is based on the computation of the exact
first-order preconditioner, the inverse of the dielectric matrix.
As a consequence, when the starting point of the self-
consistency is in the quadratic part of the functional, the
exact fixed point is reached in just one step, irrespective of
the size of the system. For more typical starting points, a few
iterations are needed to reach a satisfactory accuracy. This
method suppresses the scaling of the number of self-
consistent cycles completely but has one extremely worri-
some drawback: the computation of the preconditioning ma-
trix scales asymptotically as order �N4�, with a large
prefactor. Actually, the HIJ method is not at all used in state-
of-the art computations, as the cost of computing the precon-
ditioning matrix is prohibitive compared to the rest of the
computation.

Sawamura and Kohyama15 have proposed a method to
decrease the prohibitive cost of HIJ. However, this algorithm
still requires the use of the complete set of wave functions
which is the main drawback of HIJ. Also, Auer and
Krotscheck17 have improved the proposal of HIJ by using the
closure relation in order to limit the number of wave func-
tions that must be explicitly included in the formulation of
the dielectric matrix. However, the formulation they have
proposed is limited to systems having no nonlocal potential.

Here, we propose a method inspired by HIJ. Similarly to
�yet independently of� the method of Auer and Krotscheck,17

it uses the closure relation, yet it remains applicable to all
electronic structure calculation where wave functions are ex-
plicitly computed. In our method, several improvements over
the original formulation enable tremendous improvement in
applicability, thanks to a very low prefactor. The most time-
consuming part of the HIJ algorithm is the computation of
the susceptibility matrix, later to be combined with the Cou-
lomb kernel and exchange-correlation kernel to generate the
dielectric matrix. In order to generate the susceptibility ma-
trix, HIJ relies on the Adler-Wiser expression18,19 that con-
tains a double sum over all occupied states and �a large num-
ber of� unoccupied states. We succeed to produce an
approximate first-order preconditioner thanks to only occu-
pied states �optionally completed by a few unoccupied
states�, with the closure relation providing an extrapolation
of the susceptibility matrix to the exact one. Hence, we have
nicknamed our procedure as the extrapolar method.

In HIJ the prefactor is also reduced by cutting off the
short wave vector response of the system, thereby decreasing
dramatically the size of the preconditioning matrix. How-
ever, throwing off such components completely destroys the
preconditioning effect when applied to systems containing
some vacuum. Indeed, the spurious small short-wavelength
oscillations created by this approximation strongly influence
the response of the exchange-correlation potential in the

empty region of the cell. We show here that instead of the
exact DFT preconditioner, the approximate RPA precondi-
tioner �in which the exchange-correlation kernel is ne-
glected� is free of this defect, still containing the potentiality
to eliminate the scaling of the number of self-consistency
cycles, and providing a large decrease of the number of it-
erations with respect to methods that do not rely on a pre-
conditioner.

On this basis, extrapolar is applicable to any system, be-
ing metallic or insulating, homogeneous or inhomogeneous:
it cuts down, for all systems, the number of self-consistent-
field �SCF� iterations, often dramatically. Its overhead is rea-
sonably small for systems with less than about 100 atoms,
and extrapolar could even prove useful up to 1000 atoms in
case an order �N3� algorithm is used for solving the Kohn-
Sham equation.

The first part �Sec. II� of this article gives the background
needed to discuss preconditioning techniques. There, we ex-
plain the distinction we make between preconditioning and
advanced mixing algorithms along with details on the condi-
tioning problem, and the description of the HIJ precondition-
ing method. Sec. III describes our proposed preconditioner,
whose parameter tuning is described in Sec. IV. Lastly, Sec.
V is dedicated to evaluation of extrapolar generality and ef-
ficiency in various combinations with mixing algorithms.
Atomic units �Hartree� are used throughout.

II. BACKGROUND

A. Self consistency

Within DFT, the Kohn-Sham equation determines the
wave functions ��i� for a given, fixed, total external potential
Vext, and an input Hartree and exchange-correlation potential
VHxc,in:

�−
�2

2
+ Vext + VHxc,in���i� = �i��i� . �1�

Such wave functions ��i� are orthonormalized 	�i �� j�=�ij
and �i is the eigenenergy associated with the wave function
�i. The electronic density ��r� is then determined from the
wave functions,

��r� = 

i

�i
��r��i�r� . �2�

Finally, an output Hartree and exchange-correlation potential
is determined from the density; the Hartree potential is a
simple integral over all space of the density convoluted with
the Coulomb kernel, and the exchange-correlation potential
is defined as a functional derivative of the exchange-
correlation energy with respect to the density:

VHxc,out�r� =� ��r��
�r − r��

dr� +
�Exc

���r�
. �3�

Although the Hartree contribution is uniquely defined, there
exist many different approximations for the exchange-
correlation energy �whose exact form is not available�. It will
become apparent in the remaining of the paper that the
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present approach does not rely on the precise definition of
the exchange-correlation energy. However, some characteris-
tics of this contribution will be revealed by the local-density
approximation of the exchange-only part �LDAX�, usually a
dominating term in the exchange-correlation functional, for
which

�ELDAX

���r�
= � 3

�
1/3

��r�1/3. �4�

Altogether, the DFT �Eqs. �1�–�3�� treatment of the poten-
tial can be summarized by

Vout = F�Vin� . �5�

�For sake of simplicity, we drop the Hxc label in the remain-
ing of the paper.� The fixed point of this equation gives the
self-consistent solution of the DFT equations

V� = F�V�� . �6�

In order to find this solution the most widely used method is
to guess a trial potential �alternatively one can start by guess-
ing a trial density instead of a trial potential�, then to deter-
mine the corresponding output potential, and from this
knowledge, to make a better trial potential, also used to de-
termine the corresponding output potential, and iterate this
procedure. This process can be summarized by

Vn,out = F�Vn,in� , �7�

for n starting from 0, increasing with the number of available
pairs of input and corresponding output potentials.

B. Linearization

First, let us suppose that we simply take the output poten-
tial as input potential

Vn+1,in = Vn,out. �8�

A solution is reached when Vn,out�Vn,in within some pre-
scribed tolerance. The main mathematical aspects which may
prevent convergence are extensively discussed by Dederichs
and Zeller in Ref. 6. If we write �V=V−V�, Eq. �7� can be
linearized

�Vn,out = f�Vn,in, �9�

where f is the functional derivative of F. It is linked to the
DFT electronic dielectric function, �DFT, obtained from the
independent-electron susceptibility of the system �0 and the
Hartree and exchange-correlation Kernel KHxc:

11

f = KHxc�0 = 1 − �DFT, �10�

where 1 represents the unit matrix. At the fixed point of the
self-consistency procedure that minimizes the total energy,
one can prove that the DFT electronic dielectric function is
definite positive.29

Now, we analyze the eigenvalues and eigenvectors of f;
suppose P is a matrix such that PfdP−1= f and fd is a diag-
onal matrix whose eigenvalues are �i, we get

�Vn,out = Pfd
n+1P−1�V0,in. �11�

The convergence condition is now clear, the absolute value
of the eigenvalues of f must all be lower than one: ��i�	1.
This constraint can be rephrased in term of the eigenvalues
of the electronic dielectric function, �DFT,i=1−�i, that should
all be positive �which is fulfilled� and smaller than two
�which is not fulfilled for most solids and molecules�.

Instead of using Vn+1,in=Vn,out, one can incorporate in
Vn+1,in only part of the difference between Vn,out and Vn,in,
thanks to the simple mixing factor 
 �here a scalar�:

Ṽn+1,in = Vn,in + 
�Vn,out − Vn,in� . �12�

In this case,

�Vn,out = P�1 + 
�fd − 1��n+1P−1�V0,in �13�

and convergence is reached if �1+
��i−1��	1 or
�1−
�DFT,i�	1 for all eigenvalues. All the eigenvalues
of �DFT being positive definite, it is enough to take

	2 /max��DFT,i� to make the simple mixing scheme con-
verge. A more refined analysis3 shows that the optimal rate of
convergence of the simple mixing scheme �with the optimal
mixing factor� depends on the ratio between the maximal and
minimal eigenvalues, called the “condition number.” The
larger the condition number, the slower the convergence. If
the condition number were equal to one, the convergence
would be reached in just one step with the appropriate mix-
ing factor. For metallic systems, the condition number di-
verges proportionally to the square of the largest linear di-
mension of the system. The reason for this divergence will
become clear in Sec. III B.

C. Iterative schemes: Advanced mixing and preconditioning

Beyond simple mixing, two kinds of algorithms exist to
help convergence. The “advanced mixing schemes” are
widely spread �e.g., Anderson algorithm,5 Pulay
RMM-DIIS,7 Dederichs6 mixing and conjugate gradient11�.
Such algorithms try to guess the Vn+1,in from the ensemble of
�Vin ,Vout� pairs �or a subset of it� and eventually some other
known properties, in the wisest possible way. On a quadratic
problem with N eigenvalues they ensure convergence in, at
most, N steps. For a problem where N is very large compared
to the final number of iterations, for the best advanced mix-
ing algorithms, the number of iterations will approximately
scale as the square root of the condition number,3 instead of
the condition number. Moreover, since those algorithms take
care of history, they can deal with evolutions of the Hessians
with respect to convergence, that is, nonquadraticity. Their
advantages over simple mixing actually apply irrespective of
the f matrix definition.

Preconditioner algorithms are complementary to ad-
vanced mixing algorithms and can be used simultaneously.
They are designed to directly modify eigenvalues and hence
the condition number of the f matrix. Instead of using Vn,out,

one uses Ṽn,out which is the preconditioned potential, defined
as follows:
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Ṽn,out = Vn,in + 
�Vn,out − Vn,in� , �14�

with 
 being now a matrix, instead of a scalar as in the
simple mixing algorithm. Then, we can mimic the analysis of
the simple mixing algorithm �supposing no advanced mixing
algorithm is used, for simplicity�, and obtain

�Ṽn+1,in = �Ṽn,out = �Vn,in + 
��Vn,out − �Vn,in� �15�

=�1 + 
�f − 1���Vn,in �16�

=�1 + 
�f − 1��n+1�V0,in �17�

=�1 − 
�DFT�n+1�V0,in. �18�

It is again possible to get a simple convergence criterion by
an analysis of the eigenvalues of the operator M
=1
−
�DFT whose eigenvalues are �i. Convergence is ensured if
limn→� �i

n=0. In case 
 is equal to the inverse of the elec-
tronic dielectric function, the eigenvalues of M
 are zero,

hence the convergence is reached in just one step.
In the field of electronic structure calculations, the pro-

posed preconditioners are: the HIJ approximation of the di-
electric matrix,9 Kerker’s metal preconditioner8 and some
variants of it.20,21

D. The HIJ approach

The HIJ approach consists in computing first the suscep-
tibility matrix thanks to the Adler-Wiser formula,18,19 then
computing exactly the dielectric matrix, and inverting it. Al-
though the formula is written in a plane-wave basis in the
original paper, with the number of allowed plane waves de-
termined by a kinetic-energy cutoff, we will focus on the
slightly simpler real-space formulation.

We suppose, also, for simplicity, that we deal with fully
occupied or fully unoccupied bands only, and focus on the
non-spin-polarized case. Here, nvalence is the number of occu-
pied bands, which might vary with the wave vector k sam-
pling the Brillouin zone. The susceptibility matrix writes

�0�r,r�� = 

k



n=1

nvalence



n�=nvalence+1

�

2
�kn

� �r��kn��r��kn�
� �r���kn�r��

Ekn� − Ekn
. �19�

Within the DFT formalism, the electronic dielectric matrix is given by:

�DFT�r,r�� = ��r − r�� −� �KH�r,r�� + Kxc�r,r����0�r�,r��dr�, �20�

where KH is the Hartree kernel, KH�r ,r��= 1
�r−r��

, and Kxc the

exchange-correlation kernel defined as Kxc�r ,r��=
�2Exc

���r����r��
.

The resulting inverted dielectric matrix is applied to the
residual of the potential Vn,out−Vn,in. If performed using the
full set of plane waves and the full set of bands, it is the
exact first-order preconditioner. Ho et al. note that the com-
putation can be done on a fairly restricted plane wave basis
which reduces tremendously the computational cost. Already
at that time, the sum over unoccupied states was hindering
the use of this method, although a full Hamiltonian diagonal-
ization �thus giving all the bands, unoccupied as well as oc-
cupied� was then current practice. Actually, modern elec-
tronic structure calculations do not need anymore a full
Hamiltonian diagonalization.

III. EXTRAPOLAR

A. Computing an approximate susceptibility matrix

The extrapolar method relies on a way for not including
many conduction bands in the susceptibility matrix evalua-
tion. In the following, we denote by nband the number of
bands explicitly included in the calculation, usually only
slightly larger than the number of valence bands nvalence.

As seen from Eq. �19�, it is possible to compute exactly
the contribution to the susceptibility matrix of occupied and
unoccupied bands up to nband. We do it and denote the result
as A.

A�r,r�� = 

k



n=1

nvalence



n�=nvalence+1

nband

2
�kn

� �r��kn��r��kn�
� �r���kn�r��

Ekn� − Ekn
.

�21�

Then:

�0�r,r�� = A�r,r�� + B�r,r�� �22�

where

B�r,r�� = 

k



n=1

nvalence



n�=nband+1

�

2
�kn

� �r��kn��r��kn�
� �r���kn�r��

Ekn� − Ekn
.

�23�

We approximate part B, by replacing B with B̃ where the
energy that depends on the summation index n� is replaced

by a fixed energy Ē, and the whole expression is multiplied
by some parameter :
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B � B̃ = 

k



n=1

nvalence



n�=nband+1

�

2
�kn

� �r��kn��r��kn�
� �r���kn

� �r��

Ē − Ekn

.

�24�

Thanks to the closure relation, we can avoid the infinite sum-
mation.  helps in tuning the effect produced by replacing

Ekn� with Ē. The final result is:

B̃�r,r�� = 

k



n=1

nvalence

2
�kn

� �r��kn�r��

Ē − Ekn

� ���r − r�� − 

n�=1

nband

�kn��r��kn�
� �r��� �25�

=2

k



n=1

nvalence 

Ē − Ekn
��n�r���r − r��

− �kn
� �r��kn�r�� 


n�=1

nband

�kn��r��kn�
� �r��� . �26�

This enables a drastic reduction in the number of bands
needed, still keeping close to the real susceptibility matrix.

Although the summation gets an important reduction, the
overall scaling is unchanged since both A and B includes
terms scaling such as O�N4�. This makes the prefactor all the
more important for actual use of this preconditioner.

B. Reciprocal space formulation

The complete approximated dielectric matrix �DFT, or
Hessian of a DFT problem, can be a quite large object for
large calculations, growing like N2. Moreover, computing its
inverse product with the potential could be a very long op-
eration. Various ways exist to overcome this issue, both for
approximated dielectric matrix9 and for general Hessian.12

As can be seen in Eq. �30�, not all components of the sus-
ceptibility matrix will matter for preconditioning. In fact
only those associated with the smallest G vectors will be
amplified by the Coulombic term, resulting in the so-called
charge sloshing phenomenon. This arises from the term 1

�cG2

in Eq. �30� that produces the very large eigenvalues of some
large Kohn and Sham SCF problem.

This led us to apply the method proposed by Ho et al. in
Ref. 9. We compute the inverse dielectric matrix in recipro-
cal space, using only the components associated with G vec-
tors smaller than an arbitrary plane-wave cutoff energy—
usually much smaller than the cutoff energy used to describe
the wave functions. The approximated susceptibility matrix
in real-space writes

�0�G,G�� = 

k



n=1

nvalence



n�=nvalence

nband

2
	�kn��e

−i�G−G��r��kn��	�kn�e−i�G−G��r��kn�

Ekn� − Ekn

+ 

k



n=1

nvalence �

Ē − Ekn

���G − G�� − 	�kn�ei�G−G��r��kn�� � � 

n�=1

nband

	�kn��e
−i�G−G��r��kn��� �27�

In Sec. IV C, we mention that a typical cutoff energy used
for extrapolar is about 2 hartrees. Usual soft pseudopotentials
require cutoff energies of about 15 hartrees. The number of
grid points used to represent a function with a given cutoff
energy E is N��cE

3/2. This makes the memory footprint of
the susceptibility matrix grows as the square of the volume
of the cell ���c

2E3�. The storage requirement for all wave
functions also grows as the square of the volume of the cell,
�c

2E3/2. The ratio of cutoffs and the fact that a single matrix
is used results in a typical memory usage of a few percent of
the one needed to store wave functions.

C. RPA vs DFT preconditioner

The procedure should now continue with the generation
of the electronic dielectric matrix, see Eq. �20�. However, a
close look at the LDAX expression reveals a potential

problem in its evaluation, in case of very weak densities:

�LDAX�r,r�� = ��r − r�� −� 1

�r − r��
dr��0�r�,r��dr�

−
1

3
� 3

�
1/3

�−2/3�r��0�r,r�� . �28�

Indeed, the exchange-correlation kernel diverges in this case,
like �−2/3�r�. Because the susceptibility matrix is approxi-
mated by the treatment of the infinite sum over unoccupied
bands and the reduction of the number of plane waves, this
divergence is damaging and destroys the good precondition-
ing properties of the approximate scheme, as will be seen in
Sec. VID.

In the RPA �or test-charge� dielectric matrix, the exchange
and correlation part of Eq. �20� is removed, which gives:
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�RPA�r,r�� = ��r − r�� −� 1

�r − r��
dr��0�r�,r��dr�.

�29�

Its formulation in reciprocal space is especially instructive

�RPA�G,G�� = �G,G� −
1

�cG
2�0�G,G�� . �30�

In the latter formula, there is another divergence, obtained
when G=0. However, the effect of this divergence is quite
different from the one of the exchange term. Indeed, the
range of eigenvalues of the electronic dielectric matrix,
which gives the condition number of the self-consistency
iterative procedure, is mainly governed by the magnitude of
the smallest wave vector G treated,3 through the Hartree
term 1

�cG2 . For small values of G, �RPA�G ,G�� diverges for
metals, while it saturates for insulators, due to the different
behavior of �0�G ,G�� in these limits.22 On the contrary, the
divergence in real space of the exchange-correlation kernel
for vanishing densities is completely damped by the exact
susceptibility matrix for vanishing densities, so that the di-
vergence of the exchange-correlation term does not cause a
divergence of the condition number. In general, the smaller
eigenvalues are lower than one, but do not tend to zero.
Thus, the RPA dielectric matrix might be used as a precondi-
tioner as well.

Formulation of Eq. �29� has two advantages and one
drawback compared to that of Eqs. �28� or �20�. First and
obviously, this approximation is exchange-correlation inde-
pendent which is more tractable in a code; the associated
drawback is, if divergence in the SCF cycles comes from the
exchange and correlation term, it will not be treated. The
second, yet most important and less obvious benefit is that
the formulation of �RPA�G ,G�� unlike �LDAX�G ,G�� does
not diverges in vacuum, which happens to be a strong prob-
lem when �0 is approximated by using a small plane wave
cutoff energy. The standard use of extrapolar will be based
on the RPA formulation.

IV. EXTRAPOLAR: IMPLEMENTATION AND TUNING

A. Implementation

The generation of the inverse dielectric matrix ought not
to be done at each self-consistency step, since the overall
goal is not to reach the exact computation of an approximate
preconditioner, but to cut down the number of self-
consistency cycles with the smaller possible overhead. The
initialization of the self-consistency is usually done, either by
considering a collection of pseudoatoms and the associated
density and potential, or by a tight-binding calculation using
atomic pseudo-orbitals. In both cases, the susceptibility ma-
trix is already rather accurate when evaluated from the cor-
responding wave functions and eigenenergies. For instance,
most of the time, its maximal eigenvalue will change by
about a factor of two during SCF cycles. Moreover, it takes a
very rough convergence in total energy to get a dielectric
matrix perfectly converged for preconditioning purposes.
Since its computation is long �O�N4� operation�, one seeks a

strategy for equilibration between preconditioner evaluation
and advancement through SCF cycles. In the remaining of the
paper, we will keep with a suboptimal, yet efficient scheme:
the preconditioner is evaluated only at a few predetermined
steps during SCF cycles, usually the first, and between the
fourth and sixth step. This scheme proves efficient for most
problems. However, it is advisable to use a wiser strategy for
very large metallic systems.

In addition to this strategic choice, the extrapolar method
depends on four parameters:

�i� the plane wave cutoff energy for the computation of �0
and �;

�ii� the number of conduction bands explicitly included;
�iii� ;

�iv� Ē.
We will have to tune these parameters in such a way that

they can be applied to many different systems without fur-
ther adjustment, giving a blind speedup.

The extrapolar technique has been implemented in the
software package ABINIT23 with the following default param-
eters: energy cutoff of 2.2 hartrees for evaluation of � and

similar matrices; nbands=1.5nvalence �for metals�; =0.5. Ē is
taken to be the largest explicitly computed eigenenergy, plus
0.1 hartree. The default advanced mixing algorithm is Pulay
RMM-DIIS algorithm. The following sections will provide
an empirical justification of these choices, as well as high-
light the impact �or lack of impact� they have. They have
been tested for many more systems than those presented
here, as this implementation in ABINIT has already been
available for some years already. Concerning the strategy for
the recomputation of the dielectric matrix, the default behav-
ior recommended to the ingenuous user in ABINIT consists in
a single update using the fifth step wave functions. Actually,
on most systems, one to nine SCF steps are enough to get an
excellent preconditioner �remember that even a factor of two
on the eigenvalues is fine for preconditioning purposes�. This
works very well for all small systems �L	10 nm�. For large
systems, and specific mixing scheme, this recommendation
must be tuned. Also, it is always useful to avoid recomputing
the preconditioner at a SCF step where the potential, and
then the updated wave functions, are further away to self-
consistency than at the step where the preconditioner was
previously computed.

B. Prototypical cells

Preconditioning problem arises from a combination of
materials susceptibility and system size. In Ref. 3, Annett
shows that in a worst case, a linear cell of bulk metal with a
single long dimension, this leads to increase of eigenvalues
proportional to the square of the system size. This worst case
is most interesting for the present study, where we seek con-
ditioning problems at the lowest CPU cost per self-consistent
iteration, in order to tune parameters and study test cases.
Yet, the preconditioner proposed by Kerker8 is very efficient
for bulk materials �or cells with weakly varying dielectric
tensor�. In order to tackle a real challenge, we will consider
inhomogeneous, long, cells that simulate a periodic packing
of bulk metal and vacuum layers �slabs�, where Kerker’s
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preconditioner is of nearly no help. We will base our nomen-
clature for the different slabs on the letter S �for Slab� with
two integer indices, referring to multiples of primitive cell
dimensions. The subscript index will mark out the number of
crystal unit cell necessary to fill up the supercell and the
superscript will mark out the number of such cells which are
not empty. For instance S16

8 designate a supercell simulating
slabs wide of 8 unit cells separated by the same width of
vacuum.

Strontium, a metal with a large lattice parameter of about
6 Å, described with a very soft pseudopotential using only
two electrons, in Sn

n/2 cells, is prototypical of difficult condi-
tioning problems, still leading to nonprohibitive calculations.
Also, one of the most studied elements in DFT is silicon.
Therefore, it will also be used within this study, despite being
an insulator, with a maximal eigenvalue of the bulk elec-
tronic dielectric tensor on the order of twelve. Even though
non-neutralized surfaces of silicon, with dangling bonds, will
add some complexity to the problem, this last species of cells
do not represent a tough conditioning problem. For each
atomic species, the surface index chosen is �100� in their
most stable phase under ambient conditions: FCC for Sr,
diamond for Si. In both cases, the lattice parameter and in-
ternal geometric degrees of freedom of the slab are unre-
laxed, as this is quite irrelevant for the present study of pre-
conditioners �we draw general conclusions not only thanks to
the present study of two kinds of cells, but also thanks to the
extensive use of this preconditioner mentioned in Sec. IV A�.

The pseudopotentials used here are the following: for
strontium, the LDA and the GGA �PBE �Ref. 24�� pseudo-
potentials generated with FHI �Ref. 25� using the
Troullier-Martins26 scheme and provided on ABINIT website,
both with two valence electrons; for silicon we used the
Troullier-Martins26 pseudopotential which has four valence
electrons. Because the unit cell for strontium contains two
atoms, the number of valence bands in Sr cells is just twice
the number of filled unit cells. For instance we have eight
valence bands in Sr S8

4. In silicon, we have eight valence
bands per filled unit cell; that is, for instance 16 in Si S4

2.
We chose a quite shallow cutoff energy for plane waves

of, respectively, 5 and 7 hartrees for strontium and silicon.
This ensure a minimum absolute convergence of energy of
10−2 hartree. The integration in reciprocal space is made
thanks to a tight k-points mesh. The minimum distance be-
tween them being about 30 bohrs−1 �corresponding, in case
of bulk primitive cell, to a 2�2�2 grid�. Our tests on small
cells show no difference in term of self-consistent field con-
vergence between calculations with strongly converged pa-
rameters and those using lousily converged k-point mesh and
energy cutoff. The later level of convergence allows faster
tests of extrapolar on large simulation cells.

C. Tuning of parameters

In order to exemplify the behavior of extrapolar with re-
spect to a variation of the four parameters we consider a S8

4

cell of strontium and a S4
2 cell of silicon, respectively.

We take as a reference the simple mixing approach with-
out preconditioning nor advanced mixing algorithm, with
mixing parameter varying from 1 to a very small value, by
halving, and observe that the optimal mixing factor are 2−8

and 2−6, respectively. For these choices, the total-energy con-
vergence of 10−9 hartree is reached in 1713 and 454 steps,
respectively.

When using extrapolar, we evaluate the preconditioner at
step one and six only, use a mixing parameter 
=0.4, and
nbands=1.5nvalence. A small mixing factor is necessary to en-
force convergence due to the absence of an advanced mixing
algorithm. In this case, the total-energy convergence of 10−9

hartree is reached in 20 and 21 steps, respectively, for the
strontium S8

4 and the silicon S4
2 cells. The speed-up factors

with respect to simple mixing are thus on the order of 100
and 20, respectively. Notice that in Sec. V we examine long
cells of strontium, for which the speed-up factor is quite
larger.

Moreover, notice that the parameters chosen for Sec. IV C
do not aim at optimum convergence. They are chosen to
enlighten parameters effects.

1. Plane-wave cutoff energy

Table I presents the behavior of the number of steps as a
function of the plane-wave cutoff. It shows that a very small
cutoff energy for the preconditioner matrix, much smaller
than the default value of 2.2 hartree, is possible. A smaller
cutoff might even be a better choice with a simple mixing
scheme based on a mixing parameter smaller than one �like
here where it is 0.4�. However, in most of the following, if
not otherwise mentioned we keep the very safe value of 2.2
hartrees.

Considering that only small to very small wave vectors
functions contribute to the Coulombic divergence of the self-
consistency this result looks quite natural. For very large
systems and when using advanced mixing schemes, it could
even prove useful to use cutoff energies as low as 2−4 hartree
taking into account that the divergence observed in Table I
means simply that the largest eigenvalue of the SCF cycle,
after preconditioning is larger than 5; something that all ad-
vanced mixing schemes can easily cope with.

2. Number of conduction bands

As demonstrated by Table II, that gives the behavior of
the number of steps as a function of the number of conduc-
tion bands, the more conduction bands used, the faster is the

TABLE I. Number of self-consistent-field cycles required to converge the total energy to 10−9 hartree, as
a function of the plane-wave cutoff energy used to evaluate the preconditioner.

Cutoff �hartree� 22 21 20 2−1 2−2 2−3 2−4

nSCFcycles for Sr S8
4 20 20 20 21 17 19 �

nSCFcycles for Si S4
2 22 21 24 24 21 25 �
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convergence. However, this effect is quite weak, and not
tremendously important when normal convergence rate is the
goal, except for the smallest conduction bands number for
strontium. In this case, the number of bands was not high
enough for all the included electrons. �=0.5, chosen for the
other sections of this paper, looks like a very conservative
and safe choice. If not really useful in the case of silicon it is
mandatory for the longest strontium S cells because tempera-
ture spreads electrons very high in the conduction bands.

3. � and Ē

In order to simplify inter systems comparisons, hereafter,

numerical values given to Ē refers to the gap between the last

included band in the calculation and the actual value of Ē in
Eq. �24�–�26�.

Evaluation of optimal values for the extrapolation param-

eters  and Ē can hardly be done in the previous mixing
conditions; almost any choice for those parameters leads to
good enough preconditioning for fast convergence. To dis-
criminate between values, we use stringent conditions which
result in fast divergence when the preconditioner is not good
enough. Figure 1 shows an almost common valley of optimal
choice for the parameters in both cells. To underline precon-
ditioner effects, extrapolar was evaluated at each step and the
mixing factors were raised to 0.8 for strontium S8

4 and 1 for
silicon S4

2. Obviously, this figure keeps a large dependence in

the other calculation parameters. Especially, the number of
conduction bands explicitly included in the calculation. Nev-

ertheless, values such as =0.5 and Ē=0.1 hartree seems a
fair enough choice. More tests show no needs to change
them whatever the supercell shape or the atomic species.

V. PERFORMANCES OF EXTRAPOLAR

In this section, we analyze the performances of the
extrapolar-RPA algorithm, and show first its advantages with
respect to the DFT version of extrapolar, then examine its
behavior for larger cells. If not otherwise stated, parameters
get their default value. For simple mixing we used 
=0.5.

A. RPA vs DFT preconditioner

In Fig. 2, the convergence using RPA and DFT formulation
is considered for a bulk supercell and for a slab of strontium.
For each case, the extrapolar operator is computed at startup
and then at step 4 �denoted by the ticks labeled with *�. The
plane-wave cutoff energy is 1 hartree to underline the effect
of reduced plane-wave cutoff when applying the DFT opera-
tor on cells including a vacuum part. A total of respectively
24 and 16 bands was used.

The DFT version leads to slightly better results in the bulk
case �upper part of Fig. 2�. This is coherent with the fact that

TABLE II. Number of SCF cycles required to converge the total energy to 10−9 hartree, as a function of the
number of conduction bands used to evaluate the preconditioner matrix. Here, � controls the number of bands
via the following equation: nbands=nvalence� �1+��.

� 21 20 2−1 2−2 2−3

Sr conduction bands 16 8 4 2 1

nSCFcycles for Sr S8
4 19 20 20 21 �

Si conduction bands 32 16 8 4 2

nSCFcycles for Si S4
2 20 20 21 22 24

FIG. 1. Efficiency of extrapolar with respect to the choice of 

and Ē in strontium �left� and silicon �right�. The picture shows the
convergence obtained after 10 SCF cycles in Sr �respectively, 6 in
Si�.
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FIG. 2. Comparing the RPA and DFT versions of extrapolar on Sr
S8

8 and S8
4. The dotted lines with squares show the evolution of total

energy when using the DFT operator. The plain lines with circles and
the dashed lines with triangles display the effect of the RPA version
of extrapolar with, respectively, a LDA functional and a GGA
functional.

P.-M. ANGLADE AND X. GONZE PHYSICAL REVIEW B 78, 045126 �2008�

045126-8

2−
3

2−
2

2−
1

20 21 22 23
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the DFT preconditioner corresponds to the numerical approxi-
mation of the exact preconditioner, while the RPA precondi-
tioner is the numerical approximation of an incomplete pre-
conditioner. Yet its efficiency is plagued for the cell
containing vacuum, as shown in the lower part of Fig. 2. The
DFT preconditioner reevaluated between steps 3 and 4 does
not work, although it ought to be more accurate than the RPA
one, that perfectly does the job.

The DFT version of the extrapolar operator shall be
avoided. In fact, the same thing hold for the HIJ precondi-
tioner. As mentioned earlier, when used with a complete de-
scription no problem arises. Yet, when the operator is ap-
proximated either by reducing the plane-wave cutoff with
respect to that of the pseudopotential or by means of extrapo-
lar �reducing the number of bands explicitly included�, cal-
culations in cells including vacuum diverge. This is due to
the exchange and correlation kernel which behaves propor-
tionally to �−2/3. When approximated, the divergence of this
term prevents convergence.

Another advantage of the RPA version over its DFT coun-
terpart is illustrated by the nearly joined convergence of the
LDA and GGA systems when using the former. It works
equally well irrespective of the exchange-correlation ap-
proximation, hereby reducing the implementation effort.

B. Condition number for large cells

The efficiency of a preconditioner can be quantified, in
the neighborhood of the SCF solution, by the resulting con-
dition number of the SCF cycles when this preconditioner is
applied. For cells small enough, it is easy to evaluate it by a
brute force approach. One makes first an almost perfectly
converged evaluation of the wave functions, evaluate the
preconditioning operator, and then impose a random pertur-
bation to the potential. The norm of this perturbation must be
small and kept constant through cycles. At convergence, the
perturbation becomes the eigenvector corresponding to the
maximally divergent eigenvalue of the system, while the nor-
malizing factor used to keep a constant norm is this maximal
eigenvalue. Using different mixing factor, one can obtain ei-
ther the maximal or the minimal eigenvalue, whose ratio is
the condition number.

Evaluation of the SCF condition number of nonprecondi-
tioned Sr S8

4, S12
6 , and S16

8 cells, gives, respectively, 220, 500,
and 790. This is very close to the expected behavior that
ought to be quadratic with respect to the size of the system
�the ratio between S8

4 and S16
8 is about 3.6 instead of 4�. The

preconditioned SCF condition numbers give 1.7, 1.6, and
1.4, respectively, two �nearly three� orders of magnitude
smaller than the unpreconditioned condition numbers. So, if
close to the solution, the extrapolar preconditioner achieves
almost perfectly the goal of preconditioning: it makes SCF

cycles convergence behave as O�1� even for inhomogeneous,
partly metallic systems.

C. Convergence for large cells

We exemplify now, for very long cells, up to S64
32, the

behavior of extrapolar and Pulay algorithms, each separately
as well as in combination. Some typical results are displayed
in Table III. Pulay algorithm belongs to the class of advanced
mixing algorithms, and is often considered as the best one of
this class.

Some important settings must be underlined. First, super-
cells used here are so long that finite numerical precision
starts having noticeable effects on the total energy. This is
why we reduced our convergence criterion on total energy to
10−8 hartree. Even this setting keeps having border effects
for the largest cells. Second, in the ABINIT implementation
of the Pulay algorithm, the default number of memorized
input and output potential pairs is seven. This is not enough
to reach convergence with the largest metallic cells, when
Pulay mixing alone is used, so we have increased this num-
ber to fifteen, in this case only. Third, more evaluations of
the dielectric matrix have been used, especially for stron-
tium, which is much more difficult, from the conditioning
point of view, than silicon. When used alone, extrapolar was
evaluated every six steps �+ step 3 for strontium�, after the
initialization. Combined with the Pulay algorithm, extrapolar
was evaluated at step 1 and 6 for silicon, respectively, 1, 3
and 6 for strontium. Fourth, because the evaluation time for
the extrapolar operator has a fourth order dependence on
system size, we chose to use a plane-wave cutoff energy
smaller than usual, 0.5 Ha, to reduce the overhead of the
preconditioner evaluation, and come close to the real situa-
tion. As shown previously, the impact of this choice is small.

As expected, Table III shows that energy convergence is
no more dependent of system size when simple mixing is
used. This can be opposed to the behavior of Pulay mixing
alone which, as expected, requires an increasing number of
steps to converge even when the condition number is not
increased with cell size �this is the case of silicon where the
condition number never exceeds twice the macroscopic per-
mittivity�. The faster convergence observed for silicon when

TABLE III. Examples for the number of self-consistent-field cycles required to converge the total energy
to 10−8 hartree as a function of iteration methodology and cell size: silicon and strontium.

silicon strontium

Cell S4
2 S8

4 S16
8 S32

16 S8
4 S16

8 S32
16 S64

32

Cell Length �Å� 21 43 86 172 48 97 194 389

nSCFC �simple mixing�extrapolar� 15 14 14 15 14 15 14 18

nSCFC �Pulay mixing only� 24 28 32 33 61 88 64 95

nSCFC �Pulay mixing�extrapolar� 8 11 12 13 10 11 21 �60
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Pulay mixing is used in conjunction with extrapolar in the
case of silicon was also expected.

Conversely, the effects of the combination of Pulay’s mix-
ing with extrapolar in the two largest strontium supercells
may appear surprising. Especially when considering that, for
instance, even evaluation every three steps of extrapolar do
not prevent this very slow convergence. This bears witness to
some interaction between advanced mixing scheme and the
preconditioner. While the mixing scheme builds an implicit
approximation of the Hessian of the system, each re-
evaluation of the preconditioner changes this Hessian leading
to potentially harmful interaction. In the present case, the
problem lies more likely in a bad schedule for the extrapolar
evaluation; for large metallic supercells, Pulay mixing often
leads to transient higher energy states. Evaluating extrapolar
at one of these steps leads to a less accurate preconditioner.
This is indeed happening for the largest simulations of stron-
tium slabs. We are currently exploring scheduling strategies
in which sufficient reduction in the potential residual is re-
quired before reevaluation of the preconditioner.

Due to these considerations, one must emphasize that
Table III is not a systematic comparison between mixing
methods and preconditioners �and their combined use�. There
are several purposes for this table. First, showing that the
preconditioner indeed decreases the computational burden of
the problem that initially had a wide spectrum of eigenvalue.
Even with quite large cells, the convergence can be reached
with the simplest mixing scheme. Second, to show typical
increases of the number of SCF cycles with the size of the
system: little increase of the number of SCF cycles in the
case with preconditioner, and a regular increase of the num-
ber of SCF cycles in the Pulay case. Finally, to show one
case where both techniques are joined, and comment about
the difficulty found for Sr �as a warning�.

D. Overhead

The overhead associated with the use of extrapolar can be
decomposed in several contributions: a memory overhead
discussed in Sec. III B, and a large computational one which
decomposes as follows. First, the approximate susceptibility
matrix must be evaluated. Then, the approximate RPA dielec-
tric matrix is computed, and inverted to give the precondi-
tioner matrix. Finally, the preconditioner matrix is applied to
the potential residual. Only the last operation must be done at
each self-consistent step. For large cells, the approximate
susceptibility matrix evaluation is an O�N4� procedure, with
a double sum over plane waves and a double sum over states;
the computation of the RPA-dielectric matrix in reciprocal
space, Eq. �30�, is only an O�N2� procedure; the inversion of
this matrix is an O�N3� operation; and the final application is
an O�N2� procedure. The evaluation of the potential residual
for an input potential is itself asymptotically an O�N3� pro-
cedure, to be done for each self-consistent step. Thus, for
large cells, one expects a competition between the overhead
due to the approximate matrix evaluation, only done a couple
of times during the self-consistency, and the evaluation of the
potential residual, to be performed at each self-consistent
step. The inversion of the dielectric matrix might also count

in the global load of the calculation. Notice, however, that a
more advanced implementation than the one described here
could avoid the inversion of the dielectric matrix, by direct
resolution of the linear system involving the potential re-
sidual and the dielectric matrix, thus replacing the O�N3�
step to be done a few times by a O�N2� step to be done at
each SCF cycle.

Compared to the HIJ algorithm, extrapolar simply reduces
the prefactor of the global procedure. An accurate evaluation
of the susceptibility matrix is done with a restricted set of
plane waves, even for inhomogeneous cells. Reduction num-
bers are quite system dependent. They strongly depend on
the ratio of plane-wave cutoff between the preconditioning
operator and the overall system. The last improvement pro-
vided by extrapolar is related to the number of wave func-
tions to be included in the preconditioner. For our small cells
of strontium, S8

4, this ratio between the number of plane
waves and the number of bands is higher than 100. Then
extrapolar provides a reduction of the calculation time to a
single percent of HIJ requirements. The evaluation costs for
the susceptibility matrix is proportional to the number of
conduction bands used for a given system, and in our stron-
tium studies, it decreases by a factor of about 10.

Figure 3 displays timings measurements related to ex-
trapolar, as well as guidelines displaying power functions of
order 2, 3, and 4. Extrapolar is evaluated with a plane-wave
energy cutoff of 1 hartree. We have seen earlier that an even
lower cutoff might be used, with very favorable decrease of
the overhead due to extrapolar. For all system displayed in
this picture, evaluating extrapolar takes always less time than
doing one SCF iteration, while the cost of the application of
the extrapolar preconditioner to the residual at each time step
is always negligible. If we hypothesize that the number of
self-consistent cycles to reach sufficient convergence is 15,
and that extrapolar is evaluated twice, then, the overhead of
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FIG. 3. Time scaling for simulations of Sr in cells SN
N/2. Squares

figure the time consumption for the wave-function optimization
during a single SCF step, excluding all the operations needed for
extrapolar. Triangles pointing down show the total time required to
evaluate one extrapolar operator; this is split between the dielectric
matrix inversion �stars� and the extrapolated susceptibility matrix
evaluation �diamonds�. Triangle pointing left stands for the time
taken by the extrapolar application �time for one application�. The
continuous line is ax4, the dotted line is bx2, and the dashed line is
cx3.
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extrapolar for the S96
48 cell, with 48 atoms will only be about

10% of the total time. Under the same conditions, the over-
head of extrapolar becomes comparable to the potential re-
sidual evaluation time for cells with about 300 atoms. For
cells with this size, if one relies only on advanced mixing
algorithms, like Pulay, the expected number of self-
consistent cycles is at least one order of magnitude bigger
than with extrapolar. Decreasing the cut off energy to a value
lower than 1 hartree should raise the advantage of using ex-
trapolar up to the 1000 atom level.

VI. CONCLUSION

In this article, we have proposed and analyzed extrapolar,
an approximation of the HIJ exact preconditioner for self-
consistently solving the DFT problem. This approximation
allows to reduce drastically the computational cost associ-
ated with the use of the HIJ operator. In cases where the
number of iterations increases with the system size �metallic
cases�, the extrapolar preconditioner allows to suppress this
scaling, with sometimes order of magnitude speed up in the
simulation. We showed that neglecting the exchange-
correlation contribution to the dielectric matrix was an essen-
tial point for reaching wide applicability of this procedure in
case of drastically reduced number of plane waves and con-
duction bands. The resulting extrapolar-RPA operator is suf-

ficient to lead to independence of the number of cycles upon
system size.

Our numerical experiments also show the efficiency of
using both an advanced mixing algorithm and a precondi-
tioner. However, this coupling appears to be more difficult
for larger systems. This opens the question of development
of nontrivial coupling algorithm between preconditioners
and advanced mixing schemes. Finally, we must underline
the main limitation of our extrapolar preconditioner. Even
though it performs quite well, reducing dramatically the pref-
actor with respect to HIJ, its evaluation keeps scaling like
O�N4�. This reduces its applicability to system of less than a
thousand of atoms.
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